We devote our entire power to supporting the community and the future.

<table>
<thead>
<tr>
<th>The Energia Group Companies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric power business, Electric power business support, etc.</td>
</tr>
<tr>
<td>CHUDEN KOGYO CO., LTD.</td>
</tr>
<tr>
<td>CHUDEN PLANT CO., LTD.</td>
</tr>
<tr>
<td>CHUDEN INSTRUMENTS CO., INC.</td>
</tr>
<tr>
<td>CHUDEN KANYO TECHNOICS CO., LTD.</td>
</tr>
<tr>
<td>Chugoku Electric Power International Netherlands B.V.</td>
</tr>
<tr>
<td>Chugoku Electric Power Americas, LLC</td>
</tr>
<tr>
<td>Denyo Chugoku Support Chugoku Co., Inc.</td>
</tr>
<tr>
<td>CHUDEN ENGINEERING CONSULTANTS CO., LTD.</td>
</tr>
<tr>
<td>China Power Corporation</td>
</tr>
<tr>
<td>TEMPLAR INDUSTRIAL CO., LTD.</td>
</tr>
<tr>
<td>CHUGOKU KOBETSU CONCRETE INDUSTRIES CO., LTD.</td>
</tr>
<tr>
<td>Saita Joint Thermal Power Co., LTD.</td>
</tr>
<tr>
<td>Sakuma Power Corporation</td>
</tr>
<tr>
<td>Osaka CoolGen Corporation</td>
</tr>
<tr>
<td>KAITA BIOMASS POWER CO., LTD.</td>
</tr>
<tr>
<td>ARY INCO & ENERGIA POWER YAMAGUCHI CORPORATION</td>
</tr>
<tr>
<td>ARY INCO & ENERGIA POWER OKAYAMA CORPORATION</td>
</tr>
<tr>
<td>CHUDENKO CORPORATION</td>
</tr>
<tr>
<td>The Chugoku Electric Manufacturing Company, Incorporated</td>
</tr>
<tr>
<td>OZUKO STEEL INDUSTRIES CO., LTD.</td>
</tr>
<tr>
<td>EAML Engineering Company Limited</td>
</tr>
</tbody>
</table>

| Comprehensive energy supply operations |
| Energia Solution & Service Company, Incorporated |
| Power Engineering and Training Services, Incorporated |
| MIZUSHIMA LNG COMPANY, LIMITED |

| Information and telecommunications operations |
| Energia Communications, Inc. |

| Business and life support operations |
| Energia L&B Partners Co., Inc. |
| Energia Business Service Co., Inc. |
| Energia Smile Co., Inc. |
| The Energia Logistics Co., Inc. |
| ADPLEX Co., Ltd. |
| Energia Care Service Co., Inc. |
| CHUGOKU HEALTH AND WELFARE CLUB CO., INC. |
| Houseplus Chugoku Housing Warranty Corporation Limited |

| Reference: Electrical Safety |
| Chugoku Electrical Safety Inspection Association |
To remain a corporate group chosen and trusted by society.

Maruishi Shimizu
Representative Director
President & Chief Executive Officer
THE CHUGOKU ELECTRIC POWER CO., INC.

Together with the Community

Along with facing an era of full-fledged competition due to the full liberalization of retail electric power sales, the electricity business has entered a period of change with the demands for legal separation from the transmission business by April 2020 and other pressures. In response to these environmental changes in the industry, we of the Chugoku Electric Group have instilled "Trust, Creation, Growth" as our new management philosophy.

The mission of our Group is to contribute to the sustainable development of society through group projects focused on the electricity business. Above all, since our inception our mission has been to "contribute to the development of the region by delivering a stable supply of good-quality, inexpensive electric power". To continue fulfilling our unwavering mission, moving into the future our Group will resolutely challenge new issues as one while responding in a flexible manner as the business environment undergoes great change.

Responding with sincerity to feedback from customers

We aim "to remain a corporate group chosen and trusted by society." The trust we earn from our customers forms the foundation for all the business activities of our Group. We shall take the "voice" of our stakeholders, including our customers, seriously and believe they have to be fully satisfied with correct, responsible, and sincere service.

We will contribute to the sustainable development of society by forming an accurate perspective of changes in the business environment, social demands, and customer needs and by continuing to grow ourselves.

Organization Chart

(As of April 1, 2019)
For the sake of our customers,
For the sake of our future,
Keeping our eyes on today and tomorrow,
And using our "Entire Power" for improvement.
Creative Power

A country with a self-sufficiency rate of 8%, Japan makes electricity.

The energy self-sufficiency of Japan, a country with almost no natural resources, is just 8%.

The bulk of our energy relies on imports from overseas.

We believe that it is essential to create electricity from the standpoint of "S+3Es".

The priority being "S", securing safety and the simultaneous achieving of the three Es "Energy Security", "Economic Efficiency" and "Environment".

We cannot rely on one specific power source to achieve this, and instead must take advantage of the best characteristics of each power generation method to create a well-balanced "energy mix".

Main Features of the Various Energy Resources

<table>
<thead>
<tr>
<th>Energy Resources</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Power</td>
<td>- Large amounts of power can be stably generated - Expenses can be divided by multiple electricity companies</td>
<td>- Concerns about future procurement due to fresh international competition to acquire resources - Risks are high</td>
</tr>
<tr>
<td>Oil</td>
<td>- Easy to transport, handle and store - Power generation output is easy to adjust</td>
<td>- Reserves are comparatively small - Concerned in politically unstable regions and thus suffer from shock fluctuations</td>
</tr>
<tr>
<td>Coal</td>
<td>- Reserves are abundant and procurement is stable - Prices comparatively stable compared with other fossil fuels</td>
<td>- High CO2 emissions</td>
</tr>
<tr>
<td>LNG</td>
<td>- Low CO2 emissions compared with other fossil fuels</td>
<td>- Difficult to store long-term and to produce on a flexible basis - Cool fluctuations in demand with oil prices</td>
</tr>
<tr>
<td>Renewable Energy</td>
<td>- Permanent use is possible as a genuine domestic natural resource - Flat and flat in CO2 during generation</td>
<td>- Wind and photovoltaic power generation costs are extremely low because they depend on weather conditions and other conditions - Power generation costs are higher than other power generation methods</td>
</tr>
<tr>
<td>Hydroelectric</td>
<td>- Efficiency is high, no electricity is generated</td>
<td>- Prospects of building large dams are limited</td>
</tr>
<tr>
<td>Wind Power</td>
<td>- Expansion is possible in the future - Equipment costs are low compared with other renewable energies</td>
<td>- Due to low generation efficiency, extensive areas are required in order to generate in large quantities</td>
</tr>
<tr>
<td>Photovoltaic</td>
<td>- Power can be generated during daytime when demand is high - Small-scale use is possible</td>
<td>- Power generation costs are high due to high initial investment costs</td>
</tr>
<tr>
<td>Biomass</td>
<td>- Stable power generation is possible compared to other renewable energies - Local resources can be utilized efficiently</td>
<td>- Due to low generation efficiency, extensive areas are required in order to generate in large quantities</td>
</tr>
<tr>
<td>Nuclear Power</td>
<td>- Large quantities of power can be stably generated - Can generate large quantities of electricity with small amount of fuel - Procurement of uranium is safe</td>
<td>- Requires rigorous safety measures since it poses inherent risks in the event of an accident - Fuel disposal site for high-level nuclear waste must be selected</td>
</tr>
</tbody>
</table>
We are involved in the construction of a coal-fired thermal power station utilizing cutting-edge methods of power generation.

We are using coal-fired thermal power as a power source playing a part in reducing environmental impact as much as possible while achieving the optimum energy mix. Currently, we are planning to construct the Minami Power Station Unit 2. We are working toward enhancing operational reliability by applying the knowledge obtained through the operating performance of Unit 1 of the Misumi Power Station, along with operating facilities which excel in terms of economic performance and environmental considerations by adopting USC* power generation, a state-of-the-art approach to power generation which uses the highest levels of technology possible. In addition, we are suppressing CO2 emissions even further by burning fuel mixed with biomass fuel.

In May 2019, we completed the procedures for environmental impact assessment initiated in March 2016 and going forward we are aiming to commence construction in November 2018 and commercial operation in November 2022, while taking measures to preserve the surrounding environment.

We are promoting the development of Clean Coal Technology to suppress the environmental impact of coal-fired thermal power stations.

Coal-fired thermal generation has excellent advantages in terms of supply stability and economy. In order to use it well into the future, we implemented the Osaka CoolGen Project, aiming to make a reality of an innovative low carbon-emitting coal-fired thermal power station that combines an ultimate form of high-efficiency coal-fired power generation that drastically cuts CO2 (IGCC)*1 and CO2 separation and recovery as technology for elevating operating efficiency and achieving clear operations. This project comprises verification of oxygen-blown coal-fired integrated gasification combined cycle power generation (oxygen-blown IGCC)(*2), first phase, IGCC verification of CO2 separation and recovery (second phase), and IGCC verification of CO2 separation and recovery (third phase). The Osaka CoolGen Corporation, which we set up jointly with Electric Power Development Co., Ltd., began verification and test operation for oxygen-blown IGCC in March 2017. In addition, as of April 2018 we have begun construction work on IGCC verification and testing facilities for the second phase CO2 separation and recovery. The project is being conducted as a subsidized project for the Ministry of Economy, Trade and Industry (Fiscal 2013-2019) and also as a promotional service for the New Energy and Industrial Technology Development Organization (NEDO) (Fiscal 2017 and onward).

We have introduced equipment that improves thermal efficiency in order to further increase power generation.

The thermal efficiency of our thermal power stations has improved through the introduction of the LNG combined cycle and ultra-supercritical generation methods and other developments. (Thermal efficiency of 40.8% was achieved in fiscal 2018.) Every 1% increase in our thermal power stations’ thermal efficiency leads to an annual fuel saving equivalent to roughly 200 million liters (fuel oil conversion), and moreover enables a reduction of around 800,000 tons in CO2 emissions. We have been further improving our thermal efficiency by incorporating more efficient equipment when replacing aging systems. At the Yarai Power Station, we have been replacing the gas turbines, and at the Shin-Osaka Power Station, we have replaced the steam turbines.

We procure fuel in an economic and stable manner.

With large increases in thermal fuel consumption due to the stoppage of operations at the nuclear power station and expansion of renewable energy, we are working to procure fuels in a cost-effective and steady manner required for a stable supply of electricity, responding quickly and flexibly to trends in power demands and fuel costs. Specifically, we are diversifying our fuel suppliers and contracts, relaxing restrictions on fuel quality, and are making additional procurement according to the trends in power demands. In addition, we are achieving stable operations through efficient material-handling systems which include using exclusive ships and common carrier arrangements with other companies.

Main Efforts

- Conduct procurement of Long-Term Fuel Contracts for the period of four years or more
- Conduct procurement of Long-Term Fuel Contracts for the period of four years or more
- Conduct procurement of Long-Term Fuel Contracts for the period of four years or more
- Conduct procurement of Long-Term Fuel Contracts for the period of four years or more

Outline of the Verification Testing System

- Carbon Monoxide
- Hydrogen
- Oxygen
- Water
- Fuel
- Air
- Compressed Air
We make every effort to maintain and improve stable supply and reliability through inspection and repairs of thermal equipment.

During relatively long power generation stoppage periods for regular inspection, we repair and replace facilities or equipment showing age-related degradation at thermal power stations. In addition, before peak power demand seasons we perform inspections before heavy load periods, in which flues are repaired and waterways are cleaned over a comparatively short period. We will continue to maintain and improve our reliability through accurate inspection and repair of equipment.

We take measures to prevent air pollution.

The gas discharged from the thermal power station contains various air pollutants such as sulfur oxides (SOx), nitrogen oxides (NOx), and dust that are said to cause acid rain. Various equipment including flue gas desulfurization equipment and flue gas desulphurization equipment are installed to remove these pollutants.

Sulfur Oxide (SOx) Measures

The emission of sulfur oxides is suppressed by using fuel with low sulfur content or sulfur-free fuel such as LNG, and by installing flue gas desulfurization equipment that can remove 90% or more of generated sulfur oxides.

Nitrogen Oxide (NOx) Measures

To suppress the emission of nitrogen oxides generated from the power station, we have taken measures to improve combustion and have installed flue gas desulfurization equipment that can remove 80% or more of generated nitrogen oxides.

Dust Measures

To collect the dust that is generated from the power station, we use electric dust collectors that utilize static electricity and filter type dust collectors. Together with the flue gas desulfurization equipment, we can remove 99% or more of the generated dust.

SOx, NOx Emission Intensity (Transition of Emissions Per Amount of Energy Generated by Thermal Power)

Structure of Thermal Power Generation

1. Fuel

Coal Silos (Coal storage towers)

Coal arriving on freighters is stored in coal silos (coal storage towers). The stored coal is transported to the boiler plant by conveyors, where coal is crushed into powder and then burned in the boiler.

Final Tank

Heavy oil and LNG (liquefied natural gas) transported by tankers are stored in their own storage tanks, and then pumped into boilers to be combusted.

Example of Coal-fired Thermal Power Station

1. Boiler

The boiler burns coal, heavy oil, LNG, and other types of fuel, heating the water in terms of thousands of tons inside the boiler. This creates high-temperature, high-pressure steam which is sent to the steam turbine.

2. Steam Turbine

The high-temperature and high-pressure steam sent to the turbine expands the turbine blades (turbine blades) at 3,800 rpm. The steam condenses in the condenser using seawater. After the steam condenses, the water is sent back to the boiler for reuse.

3. Generator

Directly connected to the turbine, the generator rotator produces approximately 20,000 kw of electricity. The electricity created by the generator is increased up to 13,5kV to 235kV so it can be transmitted without wastage.

Overview of Gas Turbine Inlet Air Cooling System

The output of the gas turbine, which generates electricity with the combustion energy of fuel gas and air, drops when the temperature rises and the air density (air mass decreases. This system achieves output recovery by lowering the air temperature with the vaporization heat of the water that flows out.

1. Cooling Tower

Water flows into the tower to absorb heat and cool the water, and then circulates through the heat exchanger in the gas turbine.
Creating electricity with a high and strong regard for safety.

Nuclear Power Generation

Electricity is generated by creating steam through the heat released when uranium fuel undergoes nuclear fission which then rotates the turbines. This is capable of extracting large amounts of electricity using small amounts of fuel over the long term, without emitting CO2 during the generation process. We place priority on safety above everything else. We will continue our constant pursuit of greater safety, not only satisfying the regulatory standards set by the government, but also inspecting and maintaining equipment and facilities and conducting emergency drills for unlikely events.

We conduct regular inspection, improvement, and tuning of equipment and facilities for safe and stable operation.

Nuclear power stations are composed of many pieces of equipment and facilities. Inspection and maintenance of such equipment and facilities are extremely important for safe and stable operation. The equipment and facilities are inspected as part of preventive maintenance. Instead of repairing such equipment after it fails, we inspect, service and adjust it at a specific interval or according to the state of the operating equipment. We also prevent recurrence of accidents and malfunctions by applying the results of inspections and tests conducted during daily maintenance activities and latest technical observations made based on evaluations of accidents and malfunctions at other stations.

Chubu Electric has adopted the "Integrated Maintenance System* to use the PDCA cycle for maintenance activities and advance our maintenance and reduce human errors.

* Integrated Maintenance System: System to manage all maintenance management activities.

We conduct repeated drills for proper response work when trouble occurs.

At the Operation Simulator Training Building located in the Furukawa Athletic Park in the vicinity of the Shimane Nuclear Power Station, operation simulations that allow us to simulate the mechanical actions of the nuclear generators, turbines and generators are installed for operator training. Here, our operators repeatedly practice starting and stopping the reactors and the correct operations to be taken in accordance with the types of trouble.

At the Engineering Training Building located in the power station, employees acquire the knowledge and skills necessary for servicing the equipment through systematic training of disassembly, inspection, assembly and testing of the machines, electrical and measuring instruments.

We measure environmental radiation 24 hours a day as we implement strict radiation control.

Chubu Electric and Shimane Prefecture periodically measure the concentrations of radioactive substances contained in the ocean water, soil and farm and marine products taken from around the Shimane Nuclear Power Station, and confirm that there is no effect to the surrounding environment.

Environmental radiation is measured 24 hours a day with the monitoring post installed near the power station, allowing us to confirm that there are no problems. Measurement results obtained with this strict radiation control are disclosed on the Shimane Prefecture and Tottori Prefecture brochures and websites.

We strive to suppress the amount of radiation that our employees are subjected to by automating systems, incorporating remotely controlled equipment, and carrying out simulation training before starting work. The levels are significantly lower than legally designated radiation amounts.

We conduct recurrence prevention measures for the improper occurrences at Shimane Nuclear Power Station.

In 2010, we found that some equipment of the Shimane Nuclear Power Station was not inspected according to plans. Subsequently, we took measures to prevent recurrence of the direct causes. For the underlying causes, we have been engaged in measures to prevent recurrence centering on the two pillars of "Enhancement of the nuclear power quality management system" and "Promotion of nuclear power safety culture fostering activities."

At the Shimane Nuclear Power Station in June 2015, we detected that there was a problem with the flow meter which uses a meter-filling for low-level radioactive waste. We lost the trust of many concerned people and take the matter very seriously.

In view of the problem of the flow meter used for meter-filling of low-level radioactive waste, we steadily implement recurrence prevention measures that have been formulated, putting all our efforts into testing and trial. This is in addition to continuing the measures we have taken so far to prevent the recurrence of inspection deficiencies and other troubles.
Learning from the lessons from the accident at the Tokyo Electric Power Company’s Fukushima Daiichi Nuclear Power Station, we are implementing new regulation standards based on more severe scenarios.

With a priority on ensuring safety, Chugoku Electric is actively disclosing information as we aim to become a trusted nuclear power station.

We actively disclose information, aiming for nuclear power stations that are trusted.

Taking safety measures at Shimane Nuclear Power Station

At the Shimane Nuclear Power Station, including Unit 3 under construction, we are considering the multiplicity and diversity of measures to ensure safety with the strong determination that we will never have an accident similar to the one at the Fukushima Daiichi Nuclear Power Station.

Our safety measures center on “measures to prevent accidents” and “measures in the event of an accident.”

Currently, we are also carrying out construction to improve the safety of the power station.

Emergency Response Drills

Emergency response drills are repeatedly carried out in preparation for a nuclear emergency such as loss of all power due to a large earthquake or tsunami.

We are also aiming to improve the drill contents, reviewing problems that occur during drills.

We are also aiming to improve the drill contents, reviewing problems that occur during drills.

We are also taking measures to decommission Unit 1 of the Shimane Nuclear Power Station.

According to the revised Nuclear Reactor Regulation Law enforced in July 2015, which specifies that in principle a nuclear power station's Decommissioning period should be 40 years. Unit 1 of the Shimane Nuclear Power Station was shut down on April 30th, 2015. On July 4, 2016, we submitted to the Nuclear Regulation Authority an application for our decommissioning plan for the station, which was approved on April 18, 2017. Currently, we are making preparations for the dismantling work, the first stage of the decommissioning.

We are prioritizing safety assurance as we steadily proceed with the decommissioning while gaining the understanding of people in the region.
Structure of Nuclear Power Generation (boiling-water reactor)

1. Reactor Container
 A steel vessel which encloses the main nuclear reactor components, it is covered with thick concrete cladding and fuel cans to contain radioactive material in the unlikely event of an accident.

2. Reactor Pressure Vessel
 Capable of withstanding high pressure, this is a steel vessel that safeguards radioactive material from leaking to the outside.

3. Fuel Assembly
 The fuel assembly is the component enclosed in an alloy tube called a channel box which contains bundles of fuel rods. Each fuel assembly used in the current Shimane Nuclear Power Station basically comprises 9 fuel rods held vertically and 9 horizontally inside a channel box.

4. Fuel Rod
 Uranium 235 makes up only about 0.7% of the uranium found in nature. The remaining 99.3% is uranium 238 which is difficult to split. To be utilized as fuel, it uses "low-enriched uranium oxide" with a 3% to 5% concentration of uranium 235. This is baked into the shape of approximately 1cm pellets with a diameter of approximately 1cm. Within its cladding are about 100 silver pellets and this is called a fuel rod.

5. Pellet
 The loaded uranium fuel can be used for about 4 to 5 years. Each pellet can provide an ordinary household with enough electric power for approximately 8 months.

6. Control Rod
 Control rods contain material (boric acid or hafnium) which easily absorb neutrons. The number of neutrons in the nuclear reactor can be controlled by taking in and out the control rods inside the fuel assembly, enabling them to function to adjust the output of the reactor. When a nuclear reactor has to be stopped in an emergency, all the control rods are inserted at once, stopping the fission chain reaction and shutting down the reactor.

7. Condenser
 The condenser cools the steam after the turbine has finished rotating, returning it back again to its water state. By passing seawater acting as coolant through the 30,000 to 40,000 narrow tubes inside the condenser, steam can be cooled very efficiently.

8. Generator
 The turbine rotates by the power of the steam created from the boiling water in the reactor. This causes the generator connected to the turbine to rotate, creating electricity. The mechanism by which steam is used to generate electricity is the same as that for thermal power generation.

9. Nuclear Reactor Circulation Pump
 This is a pump to circulate coolant inside the reactor and cool the fuel. Also, it can adjust the output of the reactor by fine turning the amount of flow from the recirculation pump.

10. Pressure Control Chamber
 When pressure inside the reactor container or the pressure vessel rises due to the action of the steam and other factors in the water tank in the lower portion of the reactor container, the pressure control chamber lowers the pressure by channeling steam into the chamber and cooling it. Also, it is used as a source of water to cool the reactor in the event of an emergency.

Features of the Advanced Boiling Water Reactor (ABWR) at the Shimane Nuclear Power Station Unit 3 and to be Adopted by the Kaminoseki Nuclear Power Station

Building on the experience nurtured to date through the construction, operation and maintenance of power stations with conventional Boiling Water Reactors (BWR), the ABWR is the culmination of technology developed by the government, manufacturers, and electric power companies to achieve a higher degree of safety and reliability.

Mechanism for Nuclear Fission and Control

When neutrons come into contact with uranium 235, "nuclear fission" occurs, producing a massive amount of energy and new neutrons. Once nuclear fission commences, neutrons come into continuous contact with the uranium 235 and fission occurs continuously (chain reaction). Inside the reactor, the control rods and the uranium 238 which makes up over 99% of the fuel absorb the neutrons and act to regulate the chain reaction of the fission.
Hydroelectric Power Generation

Electricity can be generated by blocking and intaking water from a large dam or small diversion weir and utilizing the power of the flow of that water to turn a hydro turbine. Used since long ago, hydropower is a recyclable natural source of energy that does not release CO2 when generating electricity. As we continue to use this precious water resource into the future, we will also take measures to use it more efficiently.
Mechanism of Hydroelectric Power Generation

1. Sluice Gate, Headrace Channel, Surge Tank, Penstock Pipeline
 - The water used by a hydroelectric power station is brought in through a sluice gate, and then passes through a headrace channel and penstock pipeline on its way to be used to turn the water turbine. The surge tank is a facility to adjust the amount of water flowing through the headrace channel and the water used by the power station.

2. Hydro Turbine
 - Water flowing at high speed and pressure through the penstock pipeline rotates the hydro turbine with great force. The amount of flowing water is regulated by a governor in order to constantly maintain the rpm of the water turbine at a set rate, enabling electricity to be generated at a stable frequency.

3. Generator
 - The rotation of the hydro turbine is conveyed to the generator which is connected to the hydro turbine by the same axis, thus generating electricity. The amount of electricity generated is determined by the volume of water and the difference in height from the water's surface in the drainage ditch to the surface of the water in the dam.

4. Transformer
 - Although the number of rotations depends on the model, the voltage of the electricity produced by generators that rotate at 100 rpm to 1,300 rpm is 200 V to 20,000 V. The electricity is stepped up to a maximum of 200 kV by the power transformer and then transmitted.

Types of Hydroelectric Power Stations

Conduit-type Power Station
- This is a method for generating electricity which involves building a diversion weir upstream in a river. Then water is channeled downstream through a gently sloping conduit, creating a difference in height with the river and generating electricity.

Dam-type Power Station
- This is a method of electric power generation by which a dam is built on a narrow river with high rock cliffs on either bank, and then water is stored in the dam and electricity is generated with the difference in height. Since this method utilizes water stored in a dam, it has the advantage of being able to adjust output in accordance with the required volume of electric power generated.

Dam and Conduit-type Power Station
- This method of power generation combines the dam-type and conduit-type. Electric power is generated by means of the combined differences in height created by the dam and the one achieved with the conduit. As with the dam-type power station, the method is able to adjust output in accordance with the required volume of electric power generated since it utilizes the water stored in the dam.

Pumped Storage-type Power Station
- This is a method of power generation where an upper reservoir and lower reservoir are built. During the night, when electricity consumption is low, water is pumped up from the lower reservoir to the upper one, and when electricity consumption is high during the day, it is released from the upper reservoir to the lower one. It acts as a storage battery by being able to store electricity in the form of water.

Dam Types

Gravity Dam
- This is a dam which maintains water pressure through the weight of the concrete. Viewed from the side, it appears as a triangle and is the most prevalent in terms of number among all concrete dams.

Fill Dam
- This is a collective term for dams built up with materials such as rock, gravel, and soil. There is an earth dam made entirely of soil and a rock fill dam built with rock, soil, and similar materials.

Arch Dam
- Viewed from above, it is bow-shaped. It maintains water pressure by not only conveying water pressure built up in the dam to the beak but also by transmitting it to the beak on either side of the valley.

Buttress Dam
- This is a dam which maintains water pressure by means of thick walls that block water with buttresses supporting them from behind.
Creating electricity using inexhaustible supplies of energy which contain so many possibilities.

Renewable Energy

Photovoltaics, wind power, woody biomass, and similar types of energy sources are forms of renewable energy which can be used over and over again without running out. For Japan, which lacks energy resources, these are valuable sources of domestic energy which do not release CO₂ when generating power. We are actively conducting research and technical development in order to maximize the possibilities which renewable energy offers.

We are promoting mixed-fuel power generation using coal ash and woody biomass.

Biomass is an organic material that plants generate with photosynthesis of inorganic water and CO₂, and thus it is a sustainable renewable energy.

Chugoku Electric started generation using coal and woody biomass as mixed fuel at the Shii-Onoda Power Station in August 2007. In fiscal 2010, we started the Forest Residue Biomass+Coal Mixed-Fuel Power Generation Verification Project, subsidized by the Ministry of Economy, Trade and Industry at the Shii-Onoda Power Station and Mutsu Power Station. We then commenced full-fledged operation from fiscal 2014. In fiscal 2016, approximately 40,000 tons of woody biomass were used for mixed-fuel power generation, and CO₂ emissions were reduced by roughly 32,000 tCO₂.

We established business ties at two locations jointly with Air Water Inc. and at one location with HIROSHIMA GAS CO., LTD., constructing biomass power stations. Along with furthering the widespread use of renewable energy, this can also contribute to promoting the region by effectively using local forest resources as much as possible.

We are making efforts for mega solar power generation.

In December 2011, Chugoku Electric started operation of the Fukuyama Photovoltaic Power Station (5 MW), our first use of mega solar power generation. We started operations at the second power station, Ube Photovoltaic Power Station (3 MW) in Ube-e, Yamaguchi Prefecture in December, 2014.

Furthermore, we established the “Hiroshima Renewable Energy Promotion Limited Liability Business Partnership” jointly with Hiroshima Prefecture and our group company, Energia Solution & Service Company, Incorporated (ESS), setting up a mega solar business to return profits to the community. This was the first mega solar business co-operated by a local government and an electric power company in Japan. We are able to contribute to the local community while at the same time promoting the introduction of renewable energy by using returning profits from the power generation business to the community.

We conducted verification of the first domestic hybrid storage battery system.

On the Oki Islands the scale of the power grid is small. In order to introduce large amounts of renewable energy (photovoltaic or wind power) whose output fluctuates due to weather and other factors, it is necessary to have countermeasures in place to respond to fluctuating output as these have a tremendous effect.

Chugoku Electric was selected for the Ministry of Environment’s subsidized project to further introduce and expand the use of renewable energy in the Oki Islands. In September 2015 we conducted a hybrid storage battery system (output: 6.2 MW) that combines two types of storage batteries with different special characteristics. In addition, we are conducting technical verification with regard to technical issues for efficient management and control of discharging and charging the batteries until the end of March 2019, and are involved in resolving technical issues, along with expanding renewable energy capacity by about 6 MW.

The technical verification conducted through the hybrid storage battery system, which combines NAS (sodium-sulfur) and lithium-ion batteries, is the first such innovative program in Japan.

Overview of Hybrid Storage Battery System

We conducted verification of the first domestic hybrid storage battery system.
From power station to customers. We support everyday life delivering electricity each day.

Electricity cannot be stored in large amounts. Thus, when electricity is needed, the required amount must be generated and distributed on a continuous basis so that the amount consumed equals the amount generated.

In order to supply the lives of its residents, the generated amount and flow of electricity are managed 24 hours a day, 365 days a year to ensure a supply of high-quality electricity to support society and the lives of its residents.
The Central Load Dispatching Center functions as the control tower, managing the generation and distribution of electric power.

When operating a transmission and distribution network, demand and supply operation that controls the amount of power generated according to the amount of electricity consumed and system operation that controls the flow of electricity and voltage are used to provide our customers with stable electricity.

Demand and supply operation
A power generation plan is created based on predictions of the demand of electric power generation which fluctuates moment by moment according to social trends and meteorological changes (weather, temperature) and the amount of renewable energy whose output changes according to the weather conditions. Electricity is generated economically and efficiently while securing a stable supply.

System operation
Chugoku Electric delivers stable electricity by switching the electricity transmission route during normal use as well as when inspecting our electricity facilities.
Weather conditions are monitored to quickly sense changes in the weather such as lightning. We respond by changing electricity transmission routes ahead of time to prevent any effect to our customers.
Detailed adjustments are also performed to maintain appropriate voltage in response to the constantly-changing electricity demand.

We upgrade our network facilities.
Many network facilities constructed during the period of rapid economic growth require remodeling. While procuring remodeling materials and equipment and ensuring stable construction labor, we will follow the remodeling plan for such aged facilities, which are increasing in number, and maintain reliability at these facilities.
Regarding electric substation equipment, we plan to replace 500 kV breaker systems with new systems over the course of approximately 35 to 50 years in stages. We are also replacing breaker systems of less than 220 kV, following our schedule.
Among the 20,000 transmission towers, those built before 1965 are also being remodeled from fiscal 2009 over the course of 30 years along with transmission lines.

Trunk line maintenance is proceeding in a planned manner and we are working hard to enhance reliability and economic performance.

Chugoku Electric systematically services the facilities related to the trunk line, including the transmission lines and substations while considering various elements such as maintenance and improvement of supply reliability and cost-effective demand and supply operation.

A substation in the power system is required to perform a transformer as well as a breaker to switch the circuit in the event of an accident or trouble.

We support electric power consumption in urban areas through the use of underground power grids.

In order to send stable electricity to urban areas which require large amounts effectively and safely, we use 110 kV underground transmission lines. In addition, in response to the increasing demand for electricity in Hiroshima City, we use 220 kV underground transmission lines to achieve an absolutely stable supply of electricity. This 220 kV Hiroshima Central Line comprises our company’s exclusive cable tunnel section (approx. 20%) and a multipurpose underground utility conduit (approx. 80%).

The multipurpose underground utility conduit is a concrete underground tunnel running below roads which was dug in order to consolidate lifelines indispensable for daily life, including electricity, gas, telephone, and water and sewer services. The distinct advantage of this section is that its maintenance can be conducted without having to dig up the roads again.

We take measures to reduce loss of electricity when it is transmitted.

Electricity losses occur when the electricity generated at the power station is delivered to our customers over transmission and distribution lines. By reducing these losses, we can suppress surplus power generation and reduce CO2 emissions.

To reduce this transmission and distribution loss rate, Chugoku Electric has been advancing high-voltage transmission and distribution lines by expanding our 20 kV distribution line network. For further loss reductions, we are increasing the use of low-loss power lines and equipment and adopting power system-planning support systems that will help us reduce losses of 6 kV distribution lines.

Cross Section Example of Multipurpose Underground Utility Conduit

Conducting wide-area management of electric power.

Across Japan, there are 9 areas connected through transmission lines. When an impending shortage of electricity is predicted, such as when supply and/or demand is constrained, regulations for electricity are conducted according to instructions from the Organization for Cross-regional Coordination of Transmission Operators (a cross-regional organization). This results in a stable supply of electricity nationwide.

East Japan and West Japan Operate Under Different Frequencies

Since the help period when the country had introduced electricity, electric frequency differed according to the region. East Japan adopted 50Hz and West Japan 60Hz. As a result, when electric power is traded between East and West, the frequency is converted at three frequency converter stations to achieve a stable supply of electricity.

Frequency Differences by Region

<table>
<thead>
<tr>
<th>Region</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>East</td>
<td>50 Hz</td>
</tr>
<tr>
<td>West</td>
<td>60 Hz</td>
</tr>
</tbody>
</table>

"Shimanto Dei" Main Transmission D Line Power Distribution System (D Line Power Distribution System)
Structure of a Transmission Line

Transmission lines are supported by high steel towers and other structures. They play the role of sending massive amounts of electricity by connecting power stations and substations, as well as substations to other ones.

One of the properties of electricity is that it can dissipate into the open air by becoming heat through the resistance of the transmission line. It is necessary to send high-volatages in order to reduce loss of electricity.

We have 500 kV, 275 kV, and 110 kV transmission lines sending electricity between power stations and primary substations. We also have 66 kV and other types of transmission lines which send electricity which has undergone step-down transmission at the primary substations to large factories, railways, and distribution substations.

In order to be able to cope with the demand for electric power in the Chugoku Region and interchange power beyond the area, we have installed two routes of 500 kV transmission lines, one on the Shimonoseki side and the other on the Seto inland sea side, achieving a comprehensive transmission network.

Power Line Example (500 kV)

Transmission Tower Example (500 kV)

Structure of a Substation

A substation converts the voltage of the electricity sent to it through transmission lines using a power transformer and sends out the electricity to different transmission lines and distribution lines.

Also, there is a variety of facilities and equipment installed in a substation to enable it to deliver safe and stable electricity.

Transformer

Equipment for transforming voltage.

Breaker

Equipment to cut electric power when there is an accident or failure, and when transmitting or suspending electric power.

Disconnector

Equipment to disconnect electrical circuits when repairing or inspecting transmission and distribution lines, and equipment such as power transformers and breakers.

Instrument Transformer

Equipment (current transformers, voltage transformers) used to transform high voltage and large electric currents into low voltage and small electric currents in order to measure system voltage and currents.

Lightning Conductor

Device to regulate abnormal voltage during lightning storms in order to protect equipment at substations.

Structure of a Distribution Line

The electric power generated at a power station is delivered to customers through transmission lines and substations. The power lines that connect the last substation (distribution substation) to customers’ houses, offices, factories, and other locations are called distribution lines.

Among the various distribution lines, there are special high-voltage lines (20 kV, high-voltage lines (6,000 V) and low-voltage lines (300 V and 100 V). Electricity through high-voltage lines is stepped down to 200 V and 100 V with power transformers mounted on poles and sent to customers’ houses and offices through low-voltage lines. In addition, the lines branching off from distribution power poles to deliver electricity to customers’ houses are called feed-in wires.

Low-voltage Light Line

3-phase, 4-line type for joint usage of low-voltage lights and low-voltage power (Lights: 100V / 200V, Power: 200V)

Pole Transformer

Standard capacity is 5 to 100 kVA.

High-voltage Cutout

Equipment with a fuse inside to cut off electricity on the high-voltage side of a transformer.

A substation adjusts voltages and sends electricity efficiently.

Raising or Lowering Transmission and Distribution Line Voltage

Increasing the voltage of transmission and distribution lines reduces electricity loss. A substation increases the voltage of the electricity generated at a power station and sends it out. Then, by decreasing the voltage near where the electricity is to be consumed, electricity is delivered efficiently to customers.

Adjusting Voltage of Transmission and Distribution Lines

A substation has various equipment installed to adjust the voltage, because it is necessary to maintain the voltage of the electricity at the location where it is used within a prescribed range at all times.

Protecting Transmission and Distribution Lines

When a failure occurs on a transmission and distribution line, the line affected must be quickly cut off from the electric power system. For this, a substation has protective relays to swiftly detect a transmission and distribution line failure and disconnect the line before the electric power supply is interfered. Furthermore, when a failure is detected, the substation will be able to automatically disconnect the line.

By constructing substations underground, above-ground land can be utilized more effectively.

With the improvement in living standards and urban development, demand for electric power in large cities has grown steadily, necessitating the expansion of existing substations and construction of new ones in order to achieve a stable supply of electric power. However, it is difficult to secure land required for this in cities, and recently there have been cases of substations being constructed underground.
Compassion Power

A more abundant and comfortable life with electricity.

Electricity is something we "take for granted" in our lives. Chugoku Electric wishes to deliver electricity for the daily lives of our customers as reliably as possible.

To make their lives more comfortable, we are always thinking about what services we can offer. What we can do to aid community development.

Listen to our customers... get closer to local communities... and continue to think about the future of our customers and the community.

Chugoku Electric Group Environmental Action Plan

Our Group has made engagement in environmental matters a critical management issue and since 2019 has been undertaking a variety of environmental issues as one based on our "Chugoku Electric Group Environmental Action Plan".

Basic Policy

Chugoku Electric Group will:

1. Contribute to realizing a society that enables sustainable development through simultaneously achieving compatibility with the environment, stable supply of power, and profitability.

2. Always cherish the environment based on the following three policies and aim to be a corporate group trusted by our customers:

 1. Vigorously approach global warming countermeasures and other important issues such as promoting the formation of a recycling-oriented society and promoting local environmental conservation.

 2. Contribute to building a society in harmony with the environment by providing customers with products and services that are environmentally friendly.

 3. Actively implement two-way communications with local communities comprising dialog, activities, and other efforts related to environmental conservation.

Action Plan

1. Promotion of global warming countermeasures
2. Promotion of the formation of a recycling-oriented society
3. Promotion of local environmental conservation
4. Dissemination and encouragement of energy saving
5. Promotion of environmental communication
6. Implementation of environmental management
Always thinking about helping our customers to enjoy comfortable and satisfying lives.

Customer Services

Every year Chugoku Electric receives approximately 20,000 comments. We wish to respond to the wide range of opinions and consultations in an up-front manner with sincerity and honesty. We will respond flexibly to increasingly diversified lifestyles and offer services which earn the trust of our customers and keep them satisfied. Moving into the future, we will devote all our energies to being of use to people from the viewpoint of our customers.

We have special rate plans under the concept of "Gutto Zutto. Energia."

With the full liberalization of retail electric power sales starting in April 2016, we have introduced special rate plans for our household customers. The aim is to create new value and grow together with local communities so we can live up to the expectations of our customers, and we endeavor to have customers choose our company over the others.

"Gutto Zutto. Energia."

We are proud to provide impactful money-saving rates and convenient services.

"Gutto Zutto. Club"

Our website for the "Gutto Zutto. Club" functions as a membership site where our customers can view their energy consumption and charges, use a rate simulator to learn what happens when they change their rate plan, and take procedures to enter into various contracts. The "Gutto Zutto Plan" rate plans and point system can be accessed by becoming a member of the "Gutto Zutto. Club".

"Gutto Zutto. Pian"

We have economical and easy-to-use rate options which customers can select in accordance with their lifestyles in terms of energy consumption and usage time.

"Collaboration Menu"

With our "Energia Point Service" menu, customers can exchange the Energia Points they earned for products and services offered by partner companies operating in the Chugoku Region. In addition, they can take advantage of additional points, drawings, and other benefits only available to members.

"Energia Point Service"

This is a point system closely linked to the local area which enables customers to exchange the points they have earned through electricity usage and various website services for specialty products of the Chugoku Region, product coupons, and other rewards.

Sales of Electricity in Tokyo Metropolitan Area

From April 2016, Chugoku Electric has undertaken sales of electricity to households in the metropolitan area*. While continuing to operate with the Chugoku Region as our hub, we aim to be a corporate group that "is chosen by communities and grows beyond communities" by engaging in new business activities in the Tokyo metropolitan area.

* Tottori Prefecture, Shimane Prefecture, Kochi Prefecture, Ehime Prefecture, Okayama Prefecture, Tokyo Metropolitan (excluding Chiba Prefecture, Kanagawa Prefecture, Yamaguchi Prefecture, Shizuoka Prefecture, Fukuoka Prefecture and Fukuoka Prefecture, etc.)
We respond to inquiries and requests from our customers quickly and appropriately.

Our Okayama and Hiroshima Customer Centers are places where customers can consult, make inquiries, and request start and discontinuance of electricity services when they move home or in other situations. These Customer Centers represent enhancements to our customer service, enabling us to hold customers’ inquiries speedily, determine and analyze their needs accurately, reflect such needs promptly in our work, services, and so forth.

Overview of Customer Centers

Center

<table>
<thead>
<tr>
<th>Okayama Customer Center</th>
<th>Hiroshima Customer Center</th>
</tr>
</thead>
</table>
| Tottori, Higashi-Osaka, plus portions of Hyogo and
| Kasugai |
| |

Through our “Customer Feedback System”, we reflect our customers’ opinions and requests in the field.

Each year the company receives some 20,000 comments including opinions, requests, and criticism. This customer feedback is entered in our Customer Feedback System so that it can be rapidly transmitted to the relevant departments. In addition, we provide opportunities for our employees to be aware of the customers’ feedback by introducing all employees to the feedback we receive from customers. This leads to them recognizing customers’ expectations of our company and increasing their sensitivity toward our customers’ interests. We strive to make use of the comments we receive from customers to help with improvement of our operations and thus to further raise the levels of our customer services.

We are introducing smart meters which are useful in conserving energy and electric power.

In accordance with statutory replacement schedules, Chugoku Electric began installing smart meters in October 2015, and will install them in every customer location with low-voltage contracts (approximately 5 million units) within our company’s service area, over about 9 years up to the end of fiscal 2024. Also, along with the full liberalization of retail electric power sales and the start of various services, we install smart meters to accommodate customers who signed contracts which require the use of smart meters.

Furthermore, utilizing the functions of the smart meters, we are offering services, such as launching our “Gurutto Zutto Club” membership website where customers can view their energy consumption and information transmission from power meters to home energy management systems (HEMS).

Along with providing customers more effective measures for energy and power conservation, these services enable customers to select the rate plan most suited to their lifestyle.

We provide recommendations to our corporate customers on effective ways to use energy.

Our “Energy Diagnosis Service” is targeted at all our corporate customers. System energy consumption is measured and examined using our original energy diagnosis tools, and we will propose methods to improve operation of the equipment. Chugoku Electric actively recommends a variety of measures for effective use of energy in all areas of our corporate customers’ business from air conditioning to hot water supply. We also propose highly efficient systems for heat demands in the manufacturing processes of our industrial customers.

Information on power outages in the Chugoku Electric service area is available through our website and other means.

When power outages occur, information is posted almost in real time on our website regarding the “time of power outage”, “area affected by power outage”, “number of affected homes”, and other details. In addition, after we confirm information on the current location surrounding the outage, we will promptly upload data about the “status of response for restoration” and “restoration prospects”.

In addition, when there is a disaster, we make announcements to the public about the status of restoration work through SNS (Social Networking Services).

We maintain recovery systems through transmission and distribution networks and damage forecasting.

Chugoku Electric has formed a network so an alternate transmission route can be established immediately if a disaster renders the normal route for the transmission lines that connect the power station and the substation, and the distribution lines that connect the substation to our customers’ homes unusable. We also have a system that, if the power fails in the distribution line, judges the faulty section and automatically sends the power to other sections.

If the equipment is damaged in a natural disaster, Chugoku Electric works quickly to assign staff according to the scale of damage. The state of damage is quickly analyzed and staff are selectively assigned to areas with heavy damage. A system to predict possible damage from typhoons and snowfall is adopted. If it is predicted that there will be damage over a wide range, staff stand by at the repair base so that they can start works and restoration work as soon as possible.

We conduct general disaster prevention drills in anticipation of large-scale power outages.

Each year, Chugoku Electric holds a general disaster prevention drill assuming that a natural disaster has caused a large-scale power outage. We verify that information is relayed and restoration work is safely and swiftly carried out according to the disaster prevention work plan and various manuals.

We forge relationships with the Self-Defense Forces and other power companies in order to be able to respond quickly to disasters.

Chugoku Electric concluded a partnership agreement for natural disaster with the Middle Army of Japan Ground Self-Defense Forces and the Kure District headquarters of Japan Maritime Self-Defense Force in 2014 so that we can smoothly and promptly cooperate together in case of various disasters, including earthquake and typhoon.

By this agreement, military personnel in the event of a disaster will assist the Self-Defense Forces to support us in securing roads and transporting required materials and equipment for restoration, while allowing us to supply the Self-Defense Forces with electric power necessary for their rescue operations and to offer our facilities, premises, and other resources to the extent it does not interfere with our own work. We also coordinate training and cooperation during times when there are no disasters or emergencies. With regard to operations planning for disaster prevention, we cooperate with other power companies, cooperative companies, Organization for Cross-regional Coordination of Transmission Operations, and other entities to maintain systems for mutual response in times of extraordinary disasters, such as mutual coordination of electric power, workers, materials, and similar resources.

When heavy rainfall disasters occurred in July 2018, we became engaged in recovery work obtaining support from other power companies and cooperation from cooperative companies and local companies along with coordinating with local governments and related organizations. In addition, we provided support to Kuushu Electric Power Co., Inc. by deploying high-voltage generator trucks for restoration work to cope with disasters brought about by the Kumamoto Earthquake that struck in April 2016. We strive to keep customers informed about outages, linking with local governments and Self-Defense Forces to provide information to local governments on a continuous basis about the status of the outages, restoration estimates, and other aspects.

We are conducting efficient repair support work using electric power pole searching and portable data transmission systems.

To achieve smooth mutual support between service offices, we have equipped our cars with navigation systems using pole-pole pulse-to-pulse to guide power and repair vehicles to the correct destination.

We also have adopted a system that supports disaster restoration by using cellular phones to send data on equipment damage and propose of patrols to a system for automatic registration.

* KITAS means for “Home Energy Management System”. By connecting to home electric appliances or equipment, a customer can visually monitor the usage of electricity on a timer and can automatically control those electric appliances.
Approach to the Environment

With beautiful mountains and oceans spreading out in many directions, the Chugoku Region features a wealth of nature. To maintain this abundant environment, we at Chugoku Electric will continue our steady and diligent efforts to have each and every employee become involved in measures to prevent air pollution and reduce CO₂ emissions and to maximize whatever small effort they are able to make. We believe that the accomplishment of these efforts will lead to preserving the environment for the entire planet.

Aiming for power stations in harmony with nature, we implement environmental surveys and take proper measures.

We seek to achieve power stations in harmony with nature by examining from all angles the impact power stations have on the environment and taking proper measures. With the installation of anti-rust nets in front of the seawall at the Shimane Nuclear Power Station Unit 3, the water has become shallower, allowing sunlight to easily penetrate through to the seaweed, resulting in growth of kelp and various other types of seaweed as well as fish and shellfish. We conduct appropriate examinations of seaweed breeding to check that the aquatic plants are breeding properly.

We manage and maintain watershed protection forests which are useful for CO₂ absorption and prevention of sediment runoff.

To secure and use water necessary for hydroelectric generation on a continuous basis, we hold watershed protection forests covering approximately 1,600 ha, upstream of the Yoshida River and Takashima River in Okayama Prefecture and the Oka River in Hiroshima Prefecture. We also maintain and manage the forests appropriately, including pruning and thinning the trees. Aside from having functions to protect reservoirs, these forests absorb CO₂ which can be a cause of global warming and prevent sediment runoff, as well as possess many other functions, such as protecting the habitat for wildlife and vegetation.

We are involved in efforts for zero emissions in which we recycle the waste we generate through our business activities.

Our Group has established a goal of increasing the recycling rate of the waste it produces to 90% or higher in fiscal 2021. The volume of waste we produced in fiscal 2018 was approximately 90,000 tons. Of that amount, 94,000 tons was recycled, for a recycling rate of 94%. Ninety-one percent of the produced waste is coal ash and desulfurization gypsum.

Specific Measures

- Expanded effective utilization of coal ash for civil engineering material
- Expanded effective utilization of construction wastes, waste plastics
- Rigorous sorting and recycling of garbage from offices

We are developing and selling products made from coal ash produced from our coal-fired thermal power stations.

We are actively manufacturing and selling coal ash products through a Group company, CHUGOKU KONITU CONCRETE INDUSTRIES CO., LTD., in addition to developing products and application technologies for civil engineering and construction materials and other products using the properties of the coal ash produced from our coal-fired thermal power stations. In fiscal 2018, 140,000 tons of coal ash, equating to approximately 20% of the total coal ash produced, were turned into products.

Development of Material to Improve Bottom Sediment using "Hi-beads"

Hi-beads is a product created by adding a small amount of cement and water to fly ash suspended in the gas of combustion boilers of a coal-fired thermal power station and gathered by an electric dust collector and then granulating it. It has the property of suppressing siltation in the water of hydrogen sulfide which causes foul odor as well as nutrient cells in hot springs, which cause red tide. With its outstanding environmental remediation capabilities attracting attention, Hi-beads are being used in public works and other projects as an environmental remediation material (sand-carrying material) in marine incineration plants in Fukuoka and Sasebo, among others, in National Parks, and in other areas. With the development of granulated coal ash (Hi-beads) as a material to improve bottom sediment, in April 2018, research and development groups, including our company, received commendation for the "Development Category of the Prize for Science and Technology" by the Ministry of Education, Culture, Sports, Science and Technology.

Eco-powder Utilized in Civil Engineering Structures

Eco-powder is a product made from specially selected granules of fly ash which, when mixed with concrete, increases its strength and improves its durability, along with enhancing fluidity. Utilizing these properties, Eco-powder is used in the construction of tunnels, bridge piers, and other civil engineering structures.

In introduction, for tunnel construction work, Eco-powder can suppress the generation of dust to improve the working environment when spraying the concrete.
Devoting our entire energy for regional development. Regional development leads to our development.

We wish to be a corporation that fulfills the expectations of its customers and continues to grow together with them. Striving to become "a Group which is chosen by communities and grows beyond communities", we focus all our energies on contributing to the sustainable development of local communities.

Corporate Philosophy

Chugoku Electric’s Corporate Philosophy expresses the company’s vision. It is composed of the company’s key concept and management philosophy.

Key Concept

ENERGIA
— With You and With the Earth —

Energy stands for a "new, bright, warm and dynamic society", and signifies Chugoku Electric’s attitude towards achieving such a society.

Management Philosophy

Trust, Creation, Growth.

We take delight in earning the trust of our customers. We create an abundant future through energy. We will grow together with the community.
We took part in a coal-fired thermal power generation project in Malaysia, with overseas power generation business being positioned as one of our core businesses.

In March 2016, we participated in a coal-fired thermal power generation project in Malaysia as part of our business expansion abroad. Through our knowledge and experience accumulated from constructing, managing and operating coal-fired thermal power stations, we will continue to achieve a stable supply of electricity and a low-carbon society in Malaysia.

<table>
<thead>
<tr>
<th>Facility</th>
<th>Year</th>
<th>Unit</th>
<th>Capacity [MW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility Capacity</td>
<td>2,000 MW (1,000 MW x 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start of Commercial Operation</td>
<td>Unit 1: June 2019 Unit 2: December 2019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electric Power Purchase (Period)</td>
<td>Tanjung Nickel Industrial Park (35 years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Operating Reserve</td>
<td>Against Chinese Malaysian Ringgit (equivalent to $31 billion yen)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* LSC: Ultra Super Critical
* Transmission Sourcing Dkt

We took part in a natural gas-fired thermal power generation project in the US in May 2018.

The power generation company is in operation in the state of Connecticut. We acquired 56.2% ownership interests in the project through a newly established subsidiary. This is our first participation in the power generation business in the US. The project is to sell electricity generated by a natural gas-fired thermal power station (Kleen Energy Power Station 601 MW) owned by Kleen Energy Systems, LLC through the wholesale power market in the northeastern United States, and also to secure stable revenue through a long-term capacity agreement concluded with a local electricity company.

Establishment of our Singapore Representative Office.

Given that half of the global electric power demand is predicted to lie in Asia in the future, we established our first representative office in Singapore in July 2016 as an overseas base. The function of the representative office is to conduct research in electric power generation markets, mainly in Asia.

Development of consulting services in 28 countries.

Since the 2000s, we have been providing consulting services, developing emission credit projects and pursuing other activities in 28 countries through our technological expertise in the integrated system of power generation, transmission and distribution in Japan. For example, we have been entrusted with consulting work in Cambodia for over 10 years. The Cambodian government revised the country's master plan for electric power supply to be implemented by 2030. Based on our contract with Electricité du Cambodge (EDC), we provided support in formulating projections of electric power demand as well as devised plans for electric power development and transmission and distribution.

Aiming to "Grow Together with Local Communities" through a variety of activities contributing to local communities.

Educational support activities to stimulate children's curiosity.

We engage in educational support activities to raise interest in and concern for environmental and energy problems among children, who will form the next generation. These activities are based on the Wakayama R.I.C.H School and comprise educational support activities for energy and the environment held at various venues, as well as classes given at schools and study tours of our facilities.

Sports promotional activities through Symbolic Sports Teams.

We dedicate efforts to sports as symbolic sports: athletics, women's tackle tennis, and rugby. For example, these teams work to raise the level of sports in the region, by each giving classes and other instruction in their particular sport.

In April 2018, our Track Athletes Team received recognition for holding track and field classes for children for many years and was presented the "Social Contribution Award" at the "Industri Track & Field of The Year" award ceremony held by the Japan Industrial Track & Field Association.

We are expanding our business, as well as swiftly responding to customers' needs for natural gas.

In order to meet our customers’ increasingly diverse needs, we are engaged in providing services that utilize the strengths of the Group. Such services have our electric power business as their core and comprise our comprehensive energy supply operations, information and telecommunications operations and business and life support operations. We are working as a united Group to provide services that help to improve convenience and comfort for customers.

Comprehensive Energy Supply Operations

The natural gas supply business is one of the core of our comprehensive energy supply operations. From our two bases at Musashino and Yawata acting as hubs, the Group company Energy Solution & Service Company, Incorporated (ESS) delivers natural gas (NG) to gas companies and industrial customers mainly in the Chugoku Region.

We are expanding our business, as well as swiftly responding to customers' needs for natural gas.

Information and Telecommunications Operations and Business and Life Support Operations

Energy Communications, Inc. is our IT business which uses optical fibers and ICT (information and communications technology) to create and provide services that match customers’ needs and expectations. "MEGA ELD" is our internet service which allows a smooth "Internet life" for individual customers, and "EInWings" is our total ICT solution for corporate customers.

The Eneria Group also aims to enrich our customers’ lives by supporting business and daily life. Our care-giving services provide at-home care and nursing home services, while our real estate project utilizes real estate owned by the Group to develop residential areas, sell housing, and operate metropolitan hot spring facilities. In addition, we offer printing and advertising services and act as agents for welfare programs, as well as provide benchmarking services for residences.

Conducting social welfare activities using the special characteristics of the electric business.

To help support independence in the elderly and maintaining social being, we visit the homes of elderly people living alone and social welfare facilities. We inspect electric equipment, interact with the people, and have other activities that bring into play the characteristic traits of the electric power business.

We support the promotion of culture and sports.

We promote and support local art, culture and sports by holding concerts, culture lectures, sports tournaments and so forth.

We are involved in activities to stimulate and promote local communities.

We publish PH pamphlets featuring studies and research on industry and economy and help support regional revitalization. We also participate in local festivals, show displays at region-promoting events and participate in other region-promoting activities in collaboration with NPOs and volunteer organizations.
We are involved in cultivating human resources and building systems that can respond flexibly and effectively to changes and continue to grow.

Cultivating Human Resources

In order to respond flexibly and effectively to changes in the business environment, we establish and share our ideals for human resources needed in this age of change.

Furthermore, as our employees fulfill their own personal qualities, we create systems for our employees with a diverse range of individuality and expertise to be able to consolidate their individual strengths to continuously create new value.

Ideal Human Resources that are in Demand

In these changing times, we believe in the concept of “Thinking and acting by ourselves”.

• By “thinking by ourselves”, we mean focusing our wisdom and creating new value on the perspective of our customers.
• By “acting by ourselves”, we mean challenging and taking action with resolve regardless of the 리본을 초과한 결과 of the new and unprecedented issues and tasks.

Creating a Vibrant Corporate Culture

Chugoku Electric has established a fair personnel management policy and aims to utilize our human resources. Our policy allows our employees to work with a sense of ambition and achievement, and utilize their capabilities to achieve higher results.

Employing Diverse Human Resources

Every April, we hire new graduates (excluding those who have graduated within the past three years). We also have a mid-career recruitment policy to hire persons with advanced professional capabilities and experience working in other companies, as well as foreign workers.

Employing Persons with Disabilities

Chugoku Electric supports the independence of persons with disabilities. We collaborate closely with organizations and public engagement offices to continuously hire persons with disabilities. The employment rate of persons with disabilities as of June 31, 2018 was 2.3%. (Legal employment rate is 2.3%)

In July 2018, we established a employee Council for people with disabilities.

Promoting the Active Participation of Female Employees

We are determined to create an environment where our female employees can enjoy equal opportunities in education and training plans. Capable and necessary employees are actively afforded administrative positions.

Activities to Support Work and Family

Chugoku Electric has various systems to support employees’ work and family. Employees can take advantage of our temporary leave program, short-term employment program, and child development programs to take care of children and the elderly.

The executives of the Energia Group, in this awareness, are determined to create a better working environment for our employees, such as by setting up mobile personal computers to help parents on maternity or paternity leave develop their skills.

Energia Group promotes CSR activities

In March 2006, the Energia Group enacted the “Energia Group CSR Charter of Conduct” setting forth the direction of the CSR activities and its eight principles as the foundation for company activities and conduct of all executives and employees in the Group. Through this Charter, we are promoting CSR activities that give priority to compliance.

Energia Group CSR Charter of Conduct

We believe that the Energia Group’s fundamental mission is to fulfill its duties as a member of the community and progressively contribute to the sustainable development of society, through the Group’s operations whose prevailing target is the electric business. We further believe that the mission of the Energia Group is to contribute to the formation of a society in which customers are trusted by society.

Safety Assurance

Paying top priority on assuring safety, we will work to heighten safety consciousness and will strictly carry out the necessary measures.

Respect for Human Rights

With a spirit of respect for human rights, considering business activities, we will work toward the realization of a society in which discrimination on the basis of gender, age, or any other factor is prohibited and human rights are truly respected.

Promotion of Compliance

We will abide by relevant domestic and international laws, regulations and rules, and by the spirit thereof, and will promote its business activities that are blocked by others.

Rigorous “Customer-First”

Making it our basic purpose to meet our customers’ wide-ranging needs, we will promote business activities that always put customers first, in ways such as providing high-quality products and services that meet their satisfaction.

Active Tackling of Environmental Problems

We will promote environmental management that actively engages in environmental preservation activities, so as to contribute to the realization of a society that is capable of sustainable development.

Contributions to Local Community Development

As a corporate group with roots in our region, we will contribute to the development of local communities through many kinds of business activities.

Enhancement of Communication with Community

Through communication with local sections of the community, we will strive to respond promptly to public concerns and wishes and reflect them in our operations. We will also actively publish information so as to raise the transparency of our business activities.

Formation of Vibrant Corporate Culture

We will improve internal communication, and moreover we will work to cultivate self-directed and self-reliant human resources, and to have skills handled on from seniors to juniors, to form a lively, interesting, and dynamic corporate culture.

The executives of the Energia Group, in this awareness, is that its own role to regulate this Charter, will not set only examples in their own conduct but also will rigorously enforce the Charter so that all employees behave in accordance with it.

Our entire Group gives top priority to compliance in their management approach.

We will not allow the lessons of the past improper incidents to fade from memory. Firm in our resolve never again to repeat them, we are united as a Group in promoting management that assigns top priority to compliance, with our executives leading by example.

• Declaration of Compliance Management Promotion

After introducing on the series of improper incidents involving our generation facilities that came to light in the fall of 2005, we determined to make “placing top priority on compliance in every business activity” the foundation of our management, and in June 2007 announced our resolve and stance in that regard through a Declaration of Compliance Management Promotion.

• Chugoku Electric Corporate Code of Ethics

Chugoku Electric Corporate Code of Ethics defines what actions are appropriate for Chugoku Electric as a corporation, and the employees who work in it. To rigorously adhere to this code is being enforced.

• Corporate Ethics Committee

As an advisory body for the Board of Directors, the Corporate Ethics Committee conducts discussions on matters relating to compliance and offers such proposals and opinions as may be needed. Three experts from outside the company are included in the membership, so that the committee receives information on social demands from a broad range of customers and the local society.

• Corporate Ethics Inquiry Centers

Corporate Ethics Inquiry Centers have been established in the Compliance Promotion Division (within the company) and a few offices (outside the company) to act as our whistleblower system. With this system, employees’ expressions on issues in other companies can be informed on, or have consultations regarding, breaches of law and other cases concerning corporate ethics.

• Main Compliance Promotion Measures

We will conduct “workplace situation and employee consciousness surveys” targeting all employees. The results of these surveys are used as input for assessment and improvement of compliance promotion measures, fed back into workplaces, and utilized in discussions and so forth aimed at the creation of better workplaces.

1. Consulting our conscience
We will examine our own actions in the light of our personal conscience.

2. Speaking honestly
We will not keep doubts and problems to ourselves, but will talk them over with others in our workplace and among organizational units.

3. Actively correcting things
Where matters have been handled inappropriately, we will actively correct them without delay.

Chugoku Electric Power Co., Inc. will unite the efforts of the whole company to engage in promoting management, with our executives setting the example.

• We recognize that “compliance” means “making and abiding by social norms including ethics and morality”, and that engagement therewith is indispensable in order for an enterprise to continue its existence in the community.

Based on such recognition, we will work with our whole strength to promote management that takes as its foundation “placing priority on compliance in managing every business activity”, so as to meet the community’s demands for thorough power facility safety, stable supply of electricity, and low electricity rates.

In order to realize placing top priority on compliance, we will abide by the code of conduct in the Chugoku Electric Corporate Code of Ethics, practicing daily the following “three actions” therein as requiring particular observance.

1. Consulting our conscience
2. Speaking honestly
3. Actively correcting things

Where matters have been handled improperly, we will actively correct them without delay.

 biomass will endeavor to revise any rules that do not match actual circumstances.
Thermal Power Stations

<table>
<thead>
<tr>
<th>Power Station</th>
<th>Address</th>
<th>Approved Output (MW)</th>
<th>Unit No.</th>
<th>Rotor (max. evaporation volume)</th>
<th>Turbine (kW)</th>
<th>Generator (kW)</th>
<th>Operation Start Date</th>
<th>Fuel Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mozu</td>
<td>1-1010</td>
<td>1,000</td>
<td>1</td>
<td>2,900</td>
<td>1,000</td>
<td>1,131,000</td>
<td>June 1996</td>
<td>Coal</td>
</tr>
<tr>
<td>Matsuura</td>
<td>1-1-1</td>
<td>781</td>
<td>1</td>
<td>300</td>
<td>192</td>
<td>160,000</td>
<td>November 1961</td>
<td>LNG</td>
</tr>
<tr>
<td>Ytamae</td>
<td>2525-2</td>
<td>820</td>
<td>1</td>
<td>1,116</td>
<td>550</td>
<td>550,000</td>
<td>April 1992</td>
<td>Coal</td>
</tr>
<tr>
<td>Osaki</td>
<td>2-1-7</td>
<td>259</td>
<td>1</td>
<td>1,116</td>
<td>550</td>
<td>550,000</td>
<td>April 1992</td>
<td>Coal</td>
</tr>
<tr>
<td>Iwaki</td>
<td>1-1-1</td>
<td>850</td>
<td>1</td>
<td>1,116</td>
<td>550</td>
<td>550,000</td>
<td>April 1992</td>
<td>Coal</td>
</tr>
<tr>
<td>Yanai</td>
<td>1578-3</td>
<td>1,400</td>
<td>1</td>
<td>1,116</td>
<td>550</td>
<td>550,000</td>
<td>December 1992</td>
<td>LNG</td>
</tr>
<tr>
<td>Kudanakasi</td>
<td>4-1-2</td>
<td>700</td>
<td>3</td>
<td>2,256</td>
<td>550</td>
<td>550,000</td>
<td>September 1993</td>
<td>Coal</td>
</tr>
<tr>
<td>Shin-Onoda</td>
<td>5-1-2</td>
<td>1,000</td>
<td>1</td>
<td>1,116</td>
<td>550</td>
<td>550,000</td>
<td>January 1997</td>
<td>Coal</td>
</tr>
<tr>
<td>Shimonou</td>
<td>4-2-2</td>
<td>575</td>
<td>1</td>
<td>1,116</td>
<td>550</td>
<td>550,000</td>
<td>March 1997</td>
<td>Coal</td>
</tr>
<tr>
<td>Matsuura</td>
<td>1-1010</td>
<td>1,000</td>
<td>2</td>
<td>1,116</td>
<td>550</td>
<td>550,000</td>
<td>June 1996</td>
<td>Coal</td>
</tr>
</tbody>
</table>

Nuclear Power Station

<table>
<thead>
<tr>
<th>Power Station</th>
<th>Address</th>
<th>Approved Output (MW)</th>
<th>Unit No.</th>
<th>Approved Output (MW)</th>
<th>Fuel Type</th>
<th>Operation Start Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matsuura</td>
<td>6-2-1 1-1 2-1 3-1 4-1 5-1 6-1</td>
<td>1,000</td>
<td>1</td>
<td>1,000</td>
<td>BWR</td>
<td>February 1965</td>
</tr>
</tbody>
</table>

Thermal Power Stations (Internal combustion)

<table>
<thead>
<tr>
<th>Power Station</th>
<th>Address</th>
<th>Approved Max. Output (kW)</th>
<th>Unit No.</th>
<th>Approval Output (MW)</th>
<th>Operation Start Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kuroki</td>
<td>605-4 1-1 2-1 3-1 4-1 5-1 6-1</td>
<td>8.96</td>
<td>820</td>
<td>BWR</td>
<td>February 1993</td>
</tr>
<tr>
<td>Saigo</td>
<td>2-2-4 1-1 2-1 3-1 4-1 5-1 6-1</td>
<td>25.32</td>
<td>820</td>
<td>BWR</td>
<td>February 1993</td>
</tr>
<tr>
<td>Mishima</td>
<td>6-1-1 1-1 2-1 3-1 4-1 5-1 6-1</td>
<td>2.91</td>
<td>820</td>
<td>BWR</td>
<td>February 1993</td>
</tr>
</tbody>
</table>
Hydroelectric Power Stations

<table>
<thead>
<tr>
<th>Number</th>
<th>River</th>
<th>Power Station</th>
<th>Operation Start Date</th>
<th>Type</th>
<th>Output (MW)</th>
<th>Year Duration (yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kinu</td>
<td>Araki River</td>
<td>December 1938</td>
<td>DC</td>
<td>26</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Kamii</td>
<td>Kinu River</td>
<td>December 1938</td>
<td>DC</td>
<td>12.7</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Kamii</td>
<td>Kinu River</td>
<td>May 1975</td>
<td>DC</td>
<td>14.6</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Kamii</td>
<td>Kinu River</td>
<td>July 1962</td>
<td>DC</td>
<td>13.7</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Kamii</td>
<td>Kinu River</td>
<td>May 1970</td>
<td>DC</td>
<td>10.1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Kawai</td>
<td>Kinu River</td>
<td>September 1968</td>
<td>DC</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Kawai</td>
<td>Kinu River</td>
<td>November 1965</td>
<td>DC</td>
<td>2.7</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>Kawai</td>
<td>Kinu River</td>
<td>May 1970</td>
<td>DC</td>
<td>5.5</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Kawai</td>
<td>Kinu River</td>
<td>July 1962</td>
<td>DC</td>
<td>0.24</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Kawai</td>
<td>Kinu River</td>
<td>July 1962</td>
<td>DC</td>
<td>0.592</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>Kawai</td>
<td>Kinu River</td>
<td>January 1929</td>
<td>DC</td>
<td>0.4</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>Kawai</td>
<td>Kinu River</td>
<td>January 1927</td>
<td>DC</td>
<td>0.82</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>Kawai</td>
<td>Kinu River</td>
<td>July 1962</td>
<td>DC</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>Kawai</td>
<td>Kinu River</td>
<td>May 1970</td>
<td>DC</td>
<td>1.2</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>Kawai</td>
<td>Kinu River</td>
<td>April 1966</td>
<td>DC</td>
<td>1.69</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>Kawai</td>
<td>Kinu River</td>
<td>July 1958</td>
<td>DC</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>17</td>
<td>Kawai</td>
<td>Kinu River</td>
<td>May 1970</td>
<td>DC</td>
<td>10.1</td>
<td>2</td>
</tr>
<tr>
<td>18</td>
<td>Kawai</td>
<td>Kinu River</td>
<td>September 1968</td>
<td>DC</td>
<td>8.1</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>Kawai</td>
<td>Kinu River</td>
<td>May 1970</td>
<td>DC</td>
<td>0.22</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>Kawai</td>
<td>Kinu River</td>
<td>May 1970</td>
<td>DC</td>
<td>2.7</td>
<td>2</td>
</tr>
<tr>
<td>21</td>
<td>Kawai</td>
<td>Kinu River</td>
<td>April 1966</td>
<td>DC</td>
<td>0.47</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>Kawai</td>
<td>Kinu River</td>
<td>February 1969</td>
<td>DC</td>
<td>7.4</td>
<td>2</td>
</tr>
<tr>
<td>23</td>
<td>Kawai</td>
<td>Kinu River</td>
<td>September 1964</td>
<td>DC</td>
<td>16.2</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>Kawai</td>
<td>Kinu River</td>
<td>May 1970</td>
<td>DC</td>
<td>1.6</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>Kawai</td>
<td>Kinu River</td>
<td>May 1970</td>
<td>DC</td>
<td>0.36</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>Kawai</td>
<td>Kinu River</td>
<td>November 1955</td>
<td>DC</td>
<td>26.6</td>
<td>2</td>
</tr>
<tr>
<td>27</td>
<td>Kawai</td>
<td>Kinu River</td>
<td>September 1969</td>
<td>DC</td>
<td>3.9</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>Kawai</td>
<td>Kinu River</td>
<td>September 1969</td>
<td>DC</td>
<td>9.9</td>
<td>3</td>
</tr>
<tr>
<td>29</td>
<td>Kawai</td>
<td>Kinu River</td>
<td>May 1971</td>
<td>DC</td>
<td>0.073</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>Kawai</td>
<td>Kinu River</td>
<td>May 1971</td>
<td>DC</td>
<td>0.26</td>
<td>2</td>
</tr>
<tr>
<td>31</td>
<td>Kawai</td>
<td>Kinu River</td>
<td>January 1929</td>
<td>DC</td>
<td>1.69</td>
<td>3</td>
</tr>
<tr>
<td>32</td>
<td>Kawai</td>
<td>Kinu River</td>
<td>February 1922</td>
<td>DC</td>
<td>0.57</td>
<td>1</td>
</tr>
<tr>
<td>33</td>
<td>Kawai</td>
<td>Kinu River</td>
<td>February 1922</td>
<td>DC</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>34</td>
<td>Kawai</td>
<td>Kinu River</td>
<td>February 1922</td>
<td>DC</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>35</td>
<td>Kawai</td>
<td>Kinu River</td>
<td>November 1948</td>
<td>DC</td>
<td>22</td>
<td>2</td>
</tr>
</tbody>
</table>

Photovoltaic Power Stations

<table>
<thead>
<tr>
<th>Power Station</th>
<th>Address</th>
<th>Operation Start Date</th>
<th>Max. Output (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fujikawa Photovoltaic</td>
<td>113-2 Minoku-cho, Fujikyoshima, Hoshikuna</td>
<td>December 2013</td>
<td>1</td>
</tr>
<tr>
<td>Usei Photovoltaic</td>
<td>2-6 Nihonkai-cho, Usei-cho, Yamaguchi</td>
<td>December 2014</td>
<td>3</td>
</tr>
</tbody>
</table>

Main Hydroelectric Power Stations

- Ashio Power Station
- Shin-Cho Power Station
- Utsukio Power Station
- Asakusa Power Station
- Shin-Nebeigawa Power Station
- Shin-Tashikagawa Power Station
- Nishikawa Power Station
- Tawagunigawa Power Station
- Iwata Power Station
- Nishikawa Osaki Power Station