ポイラ大径管最大損傷部位特定手法の開発

堅也 秀高

エネルギア総合研究所 発電・材料担当

1 まえがき

累積運転時間が10万時間を超えるボイラの定期事 業者検査時期を延長する場合,余寿命診断に関する指 針⁽¹⁾に基づき,大径管等を対象として,設計条件で 高熱負荷部・高応力作用部の中から最も過酷と考えら れる代表箇所(以下,最大損傷部位)を選定し,クリ ープ破断寿命を対象とした余寿命診断を行う必要があ る。経年劣化したボイラでは,管の変形や補修工事等 を経て配管系統の荷重バランスが変化している可能性 があるため,設計条件をもとに選定した"最大損傷部 位"が必ずしも妥当とは言えない。そのような背景の もと,当所ではボイラ起動過程における大径管系統の 動きを反映させた有限要素解析により最大損傷部位を 特定する手法を開発したので紹介する(図1)。

図1 最大損傷部位特定までの流れ

【用語解説】

・シェル要素:曲面の外板で構成するシェル構造物を 有限要素モデル化するのに適した要素 ・ソリッド要素:3次元形状を中身の詰まった実体 (ソリッド)として記述する要素

要

(1) 配管系統の変位量計測方法

永久 西田

ボイラ起動過程における配管系統の変位量計測に は,土木工事等で使用される高精度レーザー測距器を 用いる。実機では保温材が取り付けられており運転中 に配管表面を直接見られないため,配管系統内に点在 する支持具に目印を取り付け,その点の変位量を3次 元的に計測し,幾何学的な位置関係から配管断面中心 の変位量に換算する(図2)。

(b)目印取り付け位置から配管断面中心への変位量換算

図2 配管変位量の導出方法

(a)リジットハンガ

(b)ボルト支持コンスタントハンガ

(c)Uベルト支持コンスタントハンガ

(d)リング支持コンスタントハンガ

(e)防振器

図3 支持具の例

(2)配管変位量計測データの吟味

支持具には様々な種類(図3)があるが,支持機構 によっては,目印取り付け位置から配管断面中心への 変位量換算段階で誤差が発生する場合がある。そのた め,各支持具での誤差発生要因を考察することにより, 解析条件として採用できる信頼性の高いデータを抽出 する。

(3) 蒸気配管系統の3次元モデル作成

配管系統図面をもとに,弾性解析に用いる蒸気配管 系統の3次元シェル要素モデルを作成する。ここでは, 配管系統の全体的な応力分布を把握することが目的の ため,溶接線はモデル化せず,継目のない配管から構 成されるモデルとする。

図4 3次元シェル要素モデル

(4)弾性解析

作成したシェル要素モデルに対し,配管材料の物性 値,ボイラ出口やタービン入口での拘束条件,実機配 管の温度・内圧の他,吟味した信頼性の高い配管変位 データを入力して弾性解析を行う。これにより,コー ルド起動過程における配管系統全体の変形状況(図5) や応力分布等を把握できる。母材よりもクリープ損傷 の進行が懸念される溶接熱影響部(HAZ)に相当する 部位に着目して高応力順に順位付けし,クリープ解析 対象部位を選定する。

なお,本稿で紹介する有限要素解析結果は,後述す るクリープ解析を含め,MSC.MARCを用いた計算例 である。

(5)クリープ解析用の詳細モデル作成

高応力発生部位周辺の詳細モデルを作成する(図6)。 ここでは,あるエルボの例を示しており,腹側・背側 の長手溶接線,溶接線の両側に位置するHAZ粗粒域お よび細粒域,母材をモデル化している。

(6)クリープ解析

配管を構成する溶接金属・母材・HAZでは材料物性 値やクリープ強度が異なるため,あらかじめ実験等に よりそれぞれの物性値やクリープ変形挙動を記述する 構成式をもとめておく必要がある。作成した詳細解析 モデルに対して,これらの解析条件の他,弾性解析か らもとめたエルボ両端部の変形量を与え,実機運転を 模擬したクリープ解析を最大数十万時間まで行う。図 7に示すように,クリープ開始前ではエルボ腹側の配 管断面における応力分布は配管内表面から外表面に向 かって次第に高くなる傾向であるが,30万時間経過 後にはクリープ損傷の蓄積によって応力分布が変化 し,エルボ腹側外表面から少し板厚内部に入ったHAZ 細粒域に局所的な高応力部位が出現している。また, 最大応力レベルはクリープ変形に伴う応力緩和の影響 で低下している。

図8 30万時間相当経過後のクリープ損傷率分布

図9 主蒸気管エルボ廃材の長手溶接線断面組織

(7)クリープ損傷評価

図8は,実機運転時間30万時間相当の間に,エルボ 腹側配管断面内に蓄積するクリープ損傷率の分布を示 している。図中で損傷率が1を超える範囲は,配管外 表面から少し内部に入ったHAZ細粒域に集中してお り,図7(b)で局所的に応力が高くなっていた箇所 との対応が見られる。ここで,図9に解析対象とは別 のボイラで10万時間以上使用後に廃却された主蒸気 管エルボ長手溶接線断面のHAZ細粒域におけるクリー プボイド発生状況を示す。蒸気条件や溶接線断面形状 等が解析モデルと同一ではないものの,クリープボイ ドの発生量が最も多いのは,外表面から少し内部に入 ったHAZ細粒域であり,解析結果でクリープ損傷率が 高かった部位に比較的近い場所であった。以上のよう に,本解析手法により実機配管断面のクリープ損傷状 態を再現できることが分かった。

ボイラ起動過程における大径管系統の動きを反映さ せた有限要素解析により最大損傷部位を高精度に特定 する手法を開発し,実機配管の余寿命診断対象部位の 選定に適用できる見通しを得た。

4 あとがき

得られた知見を電源事業本部と情報共有し,ボイラ 主要蒸気配管の余寿命診断精度向上に活用して行きた い。

参考資料

(1)平成17・03・01原院第1号「火力設備における電気事業法施 行規則第94条の2第2項第1号に規定する定期事業者検査の時期 変更承認に係る標準的な審査基準例及び申請方法等について, 別紙3:余寿命診断に関する指針」