セラミックス系材料の粒子衝突磨耗特性評価

エネルギア総合研究所 発電・材料担当 永久 堅也

まえがき

当社大崎発電所では,加圧流動床複合発電方式(以下,PFBC)を採用している。PFBCでは圧力容器内 に収納した流動床ボイラから発生する蒸気で蒸気ター ビンを駆動し,さらにボイラから排出される燃焼ガス でガスタービン(以下,GT)を駆動する(図1)。ボ イラで発生する灰のほとんどは,GTの手前に設置し た脱じん装置で捕集されるが,微細径の灰の中には GTに運ばれるものもあり,それらがGT構成部品の表 面を磨耗させることがある。既報では,3次元流動解 析により,GT中の複雑な流路を通過するガスの流れ 場や灰粒子の軌跡に関する定性的特徴を明らかにした ⁽¹⁾。この解析から得られた情報は,GT構成部品の磨 耗低減に向けた形状変更等の検討に役立つものと考え ている。

本稿では,材料の耐磨耗性向上による磨耗量低減の 観点から,PFBCから排出される燃焼灰(以下, PFBC灰)の衝突に対する,各種セラミックス材料の 耐磨耗性を評価し,大崎発電所GT構成部品への適用 可能性について検討した事例を紹介する。

2概要

(1)供試材料

表1に6種類の供試材料と選定理由を示す。特に二 段焼結窒化ケイ素は,当所が太平洋セメント㈱と共同 開発した材料で,油焚きや微粉炭焚き火力発電所ボイ ラのバーナー近傍の耐磨耗性向上を目的に適用した実 績があり,良好な結果を得ている素材である⁽²⁾。

表1 供試材料

供試材料 (素材記号)	選定理由	備考
二段焼結窒化ケイ素 (SRBSN)	当社火力発電所 での使用実績	太平洋セメント(株) との共同開発品
アルミナ (Al2O3)	代表的な工業用 セラミックス材料	市販品 (耐摩耗グ レード)
クロムカーバイド / ニッケル - クロムサー メット溶射膜(CrC)	工業的に耐磨耗 部位への適用実 績が多い	高速フレーム溶射
炭化ケイ素系セラミッ クス繊維複合材料① (SiC · 1)	硬度と繊維強化 による強度・靭 性に期待	試作品
炭化ケイ素系セラミッ クス繊維複合材料② (SiC · 2)	同上	試作品
ニッケル - クロム鋼 (Ni · Cr)	比較基準	実機廃材 肉盛溶接補修品

(2)衝突灰の選定

PFBC灰は,一般の微粉炭焚き火力発電所の灰と比 べて,カルシウム分が多いなど性状が異なることが知 られている。本研究では,試験条件を実機の磨耗状態 に近づけるため,実機GT入口で採取した灰を磨耗試 験に用いた(写真1)。

写真1 PFBC灰の走査電子顕微鏡写真

(3) 磨耗試験方法

磨耗試験は,室温にて灰粒子と水の混合液を高速で 試験片に衝突させる方式を採用した。衝突角度は,試 験片の磨耗面に対して90 ℃30 の2条件とした。図2 に試験片形状を示す。

(4)結果

図3に試験時間に対する重量減少率(=100×重量 減少量/初期重量)を示す。各試験片の耐磨耗性を比 較した結果,SRBSNは衝突角度によらず重量減少が 最も少なく,CrC溶射材や耐磨耗グレードのAl₂O₃より も耐磨耗性に優れることが分かった。また,今回試作 したSiC繊維複合材料は,粒子衝突磨耗に対しては著 しく耐久性が低いことが明らかになった。

写真2~5には,衝突角度90°で磨耗試験した SRBSN,Al₂O₃,SiC·1,Ni·Cr試験片の表面を走査電 子顕微鏡で観察した写真を示す。SRBSN,Al₂O₃, Ni·Crの各試験片では材料組織は均一かつ緻密である こと,複合材料のSiC·1では複数のセラミックス繊維 束を交互に編み上げられ,その周囲に母材が形成され ている様子が分かる。SRBSN,Al₂O₃,Ni·Crなど緻 密な材料の磨耗表面は比較的滑らかで,磨耗は微細な 粒子の衝突により徐々に進行していたことが伺える。 一方,セラミックス繊維複合材料では,磨耗部に沿っ て強化材のセラミックス繊維初切断されており,直径 約10μm程度の繊維の切断と脱落が繰り返されること により,図4に示すように加速的な磨耗が生じたもの と推察される。

図3に示した重量減少率による判定ではSRBSNと Al2O3の耐磨耗性に顕著な差は確認できなかったが, 観察の結果,明らかにAl2O3の方が表面の肌荒れが進 み,磨耗量が多いことが分かった。両材料の硬さを測 定した結果,Al2O3(ビッカース硬度:Hv2200)の方 が高硬度であるにもかかわらず,SRBSN(Hv1900) の方が耐磨耗性に優れていた。表面観察の結果,両材 料の構成粒子の大きさに相違が認められ,この違いが 耐磨耗性に関係していると考えられる。

(a) 衝突角度90 °

- 写真 2 S R B S N 試験片表面の走査電子顕微鏡写真 [衝突角90 ° , 試験時間40 min] (a): 全体写真 ,(b):(a) 中の赤枠部拡大
- (c):(b)中の赤枠部拡大,(d):(c)中の赤枠部拡大

写真 3 A12O3試験片表面の走査電子顕微鏡写真 [衝突角90°,試験時間40min] (a):全体写真,(b):(a)中の赤枠部拡大 (c):(b)中の赤枠部拡大,(d):(c)中の赤枠部拡大

写真4 SiC·1試験片表面の走査電子顕微鏡写真 [衝突角90°,試験時間05min] (a):全体写真,(b):(a)中の赤枠部拡大

写真5 Ni・Cr試験片表面の走査電子顕微鏡写真 [衝突角90°,試験時間40min] (a):全体写真,(b):(a)中の赤枠部拡大

セラミックス系材料の粒子衝突磨耗特性評価

3 研究成果

二段焼結窒化ケイ素は,工業的に耐摩耗部位への適 用実績が多いクロムカーバイド/ニッケル-クロムサ ーメット溶射膜や代表的な工業用セラミックス材料で あるアルミナよりもPFBC灰の衝突磨耗に対する耐久 性が高く,GT構成部品の磨耗低減に有望であること が分かった。一方,素材の硬度と繊維強化による強度 と靭性を期待したセラミックス繊維複合材料について は,今回試作した材料では粒子衝突磨耗に対する耐久 性が乏しく,適用の可能性は低いことが分かった。

4 あとがき

本研究で得られた知見を電源事業本部ならびに大崎 発電所と情報共有し,GT部品の保守に活用したい。

参考資料

- (1)永久堅也:ガスタービン動翼周り流動解析,エネルギア総研レビュー No.5(2006)
- (2)田中輝夫:火力部材へのセラミックス適用拡大研究,エネルギ ア総研レビュー No.1 (2005)